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I
FOREWORD

The formal purpose of this report is to address the
Si:atemeut of Work of Contract No. F49620-84-C-0045. Considerable
additional effort has been expended in Section I to provide a
comprehensive presentation of our most recent theoretical results
in electromagnetic scattering and absorption. Since this. work
encompasses over 20 years of effort (see for example, N.E.
Pedersen, J.C. Pederaen, H.A. Bathe, "A New Method of Radar
Target Concealment, " Proc. Tri-Services Radar Symposium, San
Diego, 1969), it has not been possible to include many topics,
such as comparison of bac.kscatter predictions with experimental
results.

In Section II we address the question of eleoctr:agsetic
absorption and subsequent thermal radiation by very small
particles. As in Section I, we have attempted to provide a
comaprahen'ive treatment of this subject. The material presented,
together with that in the cited references, permits the solution
of a wide range of related problems.

During the course of the program, & Hewlett Packard Model
9000/520 computer was provided by AFOSR. Without the use of this
fast machine, a large fraction of the computations presented
herein would not have been possible. It is presently being used
in conjunction with other DoD programs, including AFOSR. We are
very grateful for this contribution by AFOSR, and believe that it
has cantributed greatly to DoD and to our ultimate understanding
of many of the phenomena with which we have been dealing.
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SICTION I. IL3CTROUNINTIC TMIORT

1.1 IatroduotionI

The groundwork for the problem of scattering of olectro-

magnetic waves by thin wires was laid by Pooklingtonl, and later

Iallen2. who developed the governing integral equations. In

1947, the classic paper of Van Vlook, Bloch and Namorno sh

presented extensive results for backscattering by perfectly

conducting wires, using Nallon's equation. 3  Shortly after that,

a variational method based on Pooklingtonms equation was

described by Tai 4 , yieliling results for the most part in

agreement with those of Van V¥eck •t &l. The variational

technique was later extended to wires of finite conductivity by

Cassedy and Fainbers, although they continued to consider only

backscattsriag at normal incideace.5

In related work, a numerically-oriented solution of the

Pocklington equation was carried out by lichmor.04 for both

perfectly conducting 6 and finite-conductivity 7 wires. A similar

approach was taken by Med•yesi-Mlitschan and Kftimin.8 Applic-

ability of a Wiener-Ropf technique was sho-n by Chen.9 An

interesting approach in terms of outgoing &nd reflected waves has

been given by Shen, Vu had King. although only limited results

are available. 1 0 Curved wires have also been considered. the

circular loop by Kouyounjianll and the more general naso by

Mei. 1 2 A good review of the literature is given by linarsson. 1 3

The present authors have studied this problem in a series of U



use the variational method, so that the work can be regarded as

an eoteasion of the work of Ta1 4 and Cassedy and Fainberg8 to

inolude both finite conductivity *ad arbitrary angle of

inoidenoo. Dowever. we find it more convenient to derive the

basis equations Is the coatest of Galerkin's method. which Jones

has shown to be esaetly equivalent. 1 4

Differential scatteria8 patterns are then computed, alone

with the secttering. absorption and extinction. These cross

sections are obtained by intograting the normal component of the

Poyatiag vector over the surface of the fiber, enabling as to

avoid the integration over the fit-field sphere usually employed

to compute scatterina. In addition, we find that energy

considerations are exactly satisfied: the extinction cross

section, which by the optical theorem must equal the Imainaary

part of the forward amplitude. is identicallr equal to the sun of

the absorption and scattering cross sections. This result is

particularly valuable for those applications in which we study

the scattering and absorption properties of a cloud of such fiber

particles.

Because of the approximate nature of the variational

approach, it is important to back up the rt.nults by independent

computations wharever possible, in addition to comparison with

existing results. In the Rayleigh region, where fiber length is

small compared to wavelength, electrostatic considerations would

be expected to dominate. A quasistatic model is developed and

chocked against variational results. At high frequencies, on the

other hand, the absorption cross section per unit length must

2



I
approach that of the infinitfLy long fiber. This latter quantity

ip oomputed, and agreement is seen to be lood.

This work was originally begun for applications in the

microwave region. In order that the computations may be extended

into the infrared and visible regimes, it is vital to incorporate

the optical properties of the fibers. We do this for applicable

materials by employing the Drude model for conductivity (or

complex dielectric constant), and include as well the dependence

of conductivity on both fiber diameter and electron mean free

path.

3



1.2 Theory

Consider the thin conductive fiber of radius a and half-

length h, as shown in Fig. 1-1, ha',ing length to diameter ratio

h/a >> 1. An electromagnetic wave is incident along a direction

making an angle 8i with the positive z-axis, as shown, and we

suppose that the fiber radius is very small compared to incident

wavelength, i.e. ka << 1. so that the resultant scattered wave

has rotational symmetry.

With time-dependence factor exp(-iwt) suppressed, the

problem is described by the integral equation 1 ' 2, 4. 5

I
qsl(z) = Ej sin 0 i e ikz cos 01 + (iklo/4n) + dz' I(z') K(z',z). (1-1)

fh

The left hand side of this equation expresses the axial component

of the E-vector along the surface of the fiber in terms of an

induced line current I (z) (equal to 2na times the induced

surface current) and a surface impedance 2 ' 5, 15

+it.4  if (Ka)

J1s = + l W(Ka) (1-2)

where E
K = (w2ps + iwpci)I1 2  (1-3)

is the comllui, propagation constant within the fiber (we will

assume free-space permeability, however) and J0 , Jl are Bessel

functions. It is also tacitly assumed that 1K/k1 2  >> 1, so that

4



radial variations of the fiolds within the fiber are much more

rapid than axial ooer, The first term oa the right hand side of

Eq. (1-1) in Simply the axial coiaponont oi the incident E field.

Finally, the integral term gives the E field contribution due to

the induce4 current, where the kernel is given by

K (z',z) - (1 + 821k2az 2 ) (1/2x) S2 dO' (l/R) e ikR (1-4a)
0

R2 (z-z') 2  4a 2 sin 2 (0'/2) . (1-4b)

The current is now written as a linear combination of the

trial functions

+ikz +ikz Cos 0 i• - , e -_ (1-5)

Note that the first two of these represent resonant currents that

can exist on the infinite, perfectly conducting fiber with no

external field present 1 , and should continue to be appropriate

for moderate to large conductivity. The term exp (ikz co s 0)

gives precisely the forced response of the infinite fiber

regardless of the value of conductivity. Finally, the term

eip (-ikz cos 0 i) is included so that the trial functions can

satisf- the boundary €onditioa

I (+ h) - 0 (0-6)



of vanishing current a• the• ends of the fiber and still maintain

some flexibility.

Following this prescription, the surface current takes the

form

I(a) - as fe(z) + ao fo(z)

M a, [cot, kz out (kh co0 0i) - co* kh cos (kz cos 61))

+ ao •sin kz sin (kh co *0i) - air kh sin (ka cos 0i)]. (1-7)

In order to determine the coefficients by the Galerkin

method, first substitute Eq. (1-7) into Eq. (1-1), then multiply

separately by fe(z) and fo(z) and integrate over fiber length.

From the two resulting equations one finds that

4•iiE go
a6  = -y.-YJ - & a T =O0 o (even, odd) (1-8)

in terms of the (dimensionless) quantities

I •_+h ikz occ i

So k sin Oi-h dz fa(z) e

k = -4i (fs/1o) dt f 2f(z)

-ha

6



o k dz fo(z) dz'fa(z') K(z'.z) (1-9)
"f f'h

forq a ne, O.

All of these inte#ra' i can be evaluated analytically under t1ie

approximation ka (( 1; the results are rether lenIgthy and we do

not give them here. Note that some of these exprassions were

evaluated by Tai, for a somewhat simpler kernel. 4 ' 13 As noted

earlier, the variational procedure used by Tai 4 , as well as

Caasedy and Fainbsrg5 , would give !dentioal results. 1 4

The scattered fiold can now be expressed as an integral of

the induced current. For far-fiold soattering in the O-direction

(see Fig. 1-1) one has 1 3

Ks = 0 Ri (1/kr) eikr S(ei. 0o) (1-10)

with far-field amplitude liven by

S (i0, 0) - (kiqo/Ei) sin 0 f dz I(z) e-iZ oO. (1-11)

-h

For the differential (or bistaktic) cross section one has

ad - (4x/k 2 ) 1 s (e0 ,q) 12, (1-12)

and similarly the backscattezing or radbr crass section is given

ty (again see Fig. 1-1)

7



za-z I

2h and diameter 2a.

8



ab (4w/k2 ) I S(Oi,.-Oi) 12. (1-1)

The remaining cross sections are most easily computed by

iate~gating the normal component of the Poyntian vector over the

fiber surface, neglecting end surface oontributions. For the

soattered power one has

v.- R eJ dS (a x ae~) (1-14)
1e 2

We are interested only in effects due to the z-component of E.,

which is assumed independent of azimuth 0 because ka (< 1.

Consequently. only the 0-component of B. is needed. and because

the incident magnetic field Hi varies as cos 0 it will not

contribute to the surface integral. We can thus replace IS by H

"- 4+ Re. If Es is also replaced by E- Ei, then Eq. (1-14)

becomes

we - le dS ( ( R) - R1 dS *E it Re) (1-15)

The first term on the right hasd side gives total power flow into

the fiber, and hence is the negative of the absorbed power. The

second term is proportional to the teal part of the forward

amplitude, or the extinction cross section oa. Dividing each

term by the incident energy flux density B0
2 /21io to get cross

sections, Eq. (1-15) becomes

a@ - (4s/k 2 ) Re S (i9, 0 i) - 08 + ua, (1-16)

9



whisk is the optical theorem identifying the extinction cros8

section with the snm of the solttorisl &ad absorption cross

Soetions.

From Iq. (1-14), again substitutian for Is as before (bet

Sjas) and nozslixist1, one gets

0 fwH~ow

d8 • (Is z So) - (a d0dz) (I8)z 10

where (as)z is given by the izteolal term of Sq. (1-1). and

30 - (1/l2xa) Is(z).

Putting everything together, and msking use of Sq. (1-8),

the result is:

4j I l2 + go__...~. TIO

as [IIn. is*) 0] (1-17)k• 2ye X4 T' o - 360 11-7

One proceeds similarly with the first tern on the right hand

side of Eq. (1-15) to obtain the absorption cross sectioa. aoting

that Ks - ns 1(z). to get

Im x 7e a + o (1-IS)
so 2XT o 2. J.k Yo• - X-o T'O- X'o

Finally, is order to show explicitly that the extinction cross

section is the sum of these last two expressions, note that the

integrand in the last tern of Sq. (1-15) may be written

10



Se • (.j e ,) (1 i9 aim *• eec e (L/Ila)I" (3).

Free at. (1--). the --iteOratic1a is vooa to involve only the $g, and

with minor effort *so gets

g( TO + Uo (--

Ye xe* To &

whisk by inapeotios is the *u of Eqs. (1-17) &ad (1-18).

For long fibers, a useful check it provided by ooepatiag the

abeerptioa ooes sectioes resultia8 from the infinite fiber

solutioa. Again integrating the total field Poyatiag vecter over

the lateral surface 4wah of the fibers mains seact field

quastities as Sives by Wait,16 the rotatioaally symmetric portion

of Ahs field contributes

as - io I Ao0 /i 12 Re [(iu/lwo) 4 (Ua) Jl (Ya)] 4xah (1-20a)

where in the limit of interest to us

1 i &in Oi/Ao 'Jo (us)
ka (( I

+ sia 2 91 [In (ka sin *i/ 2 ) + y + iu/21 Kasl (ma) (1-20b)

with i - 0.5772 ... (Baler's constant). Comparisons using these

formulas will be shown below.

11



1.8 wAesitatio m.4ol

At low frequescies for which fiber dimeasions are smell

eoaptrod with wavelenstk. an electrostatic treatmest is

appropriate. The eleotr o rield 3 inside the fiber, regarded as

a Rayleigh particle, may ba written

9 - Ri - L4wP. (1-11)

where L is the depolarisin8 factor, P is the polarization, and Ri

the homoSesonos applied field along the axis. In the case of a

long, thin spheroid, whipk should be a good approximation to the

fiber in the present circumstances, the depolarizing factor to

L = (&/h) 2 [In (2h/a) -1i. (1-22)

The polarization is defined as

.- (1/4n) (a-1) E, (1-23)

where a is aew the relative dielectric constant (normalized by

dividing by to). From Eqs. (1-21) and (1-23) one hat for tho)

internal fiell

-1+ Li (s-i) (1-24)

12



and if a is taken to be oomplex. i.e., a a s' i is", then

1 + L (.'-I) - iL' -

Note that in the 9tasistatic approximation theoe is both an in-

phase aud a quadrature GompoAent of the internal field.

The electric dipo-i moment of the particle is defined as

p " PV1 , (1-16)

Where Vp is partiole volume; the po.,arizability a is thean defined

in terns of the dipole moment by

p - a 11 • (1-27)

From the preceding equatiois the desired expression for

polarizability is given by

Va =(a. 18-1) [ 1+L (s1-1) 1 + Loll'2 + is "o
4w " [I + L (i '1-1) ]F& + '(Leto " (1-28)

The absorption and soattering cross sections are simply expressed

in terms of a; one has, respectively,

a. - 4wk In u, (1-29)

a - (8w/3) 04 Ia12. (1-30)

13



The&% equations have good theoretical justification within

the raste kk 1 W/2. Whom kh ozcooede this limit, the of fective

value of the depolariuin,l factor in Sq. (1-22) is reduced. This

is because the dipolo field due to the induced *barges at the

*ads of the partiole is no longer strictly X out of phase with

the applied field. In order to take this discrepancy into

a&couat, we have devised a modified depolarizing factor given by

L- [()) + . 2, la -i . (A-Si)

At wavelengths for which kh x #, the depolarizing factor

increases as k 1 . This os consistent with our reasoniag regardisg

the high frequency behavior of the iacokeroene of the

dopolariziag field. It is because of the inclusion of Eq. (1-31)

that we refer to this theory as our Extended Quasistatio (IQB)

theory. Ve should note that the factor (U/0) appearing in 1q.

(1-S1) was &rrived at through many comparisons betvoow the RQS

and the Variational technique discussed in the previoua

subsection.

Although the above (EM) theory is only approximate, it has

the very useful properties of being simple and asal..1.j. It can,

therefore, be used to provide reasonable approximate predictions

for eases of interest. lowever, such predictions (especially in

the regime kh > 1) should be ultimately refined using the

variational teokaique. Comparative results will be shown

subsequently in this report.
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1.4 The Drode Model

Is order to apply the above results to the infrared and

visible regions. as well as the microwave case. it is necessary

to build in the optical behavior of the ftbeý.,. In this aid the

folloVinJ section we deal With (1) the inclusioA of the optical

properties, and (2) inclusion of the dependence of electrical

conductivity upon particle radius and electron seen free path, in

both the Oalerkin and quasistatic models.

In a recent paper by Ordal et a1.17. the application of the

Drude model for the prediction of complex optical dielectric

constant was compared with measured values of the real and

imaginary parts of the optical dielectric constant for a nuamber

of metals (Al. Cu. Au, Pb° As* sad V). Tabular experimental

results were also gives for PF. Pt. Co. Ni. Ti and Pd. This

model, Which is based on the free electron theory of metals, is

in surprisiagly good agreement with the observed experimental

results. Te realize that, for certain transition elements such

as Fe, the model has drawbacks. For suck cases, one must resort

to the use of tabular experimental data.

For our present discussion, we choose Cu as the substance

Qomprisiag our fibers, and will utilize the Drude model in the

calculation of the various electromagnetic cross sections. A

good exposition of this is given in Wooten's book, 18 in which the

real and imaginary parts of the dielectric constant take the form

15



2- 1 
(1-32)

Its [I . ) ] " (1-33)+!

UsiA8 iks gait$. the plasma frequency fp in given by

mj n noe1Iso (1-34)

in which a - electron density (-n3 ). & - electronic chanse, a -

eofective mass of the electron, and to - permittivity of free

space - (1/36w) 10-9 farads/m.

The quantity v is the electron relaxation time, vhich is the

time required for randomizatioa of the momentum vector of an

electron in the (metallic) lattice. For our purposes, it is

instructive to east the dielectric constant in terms of the low

frequency electrical conductivity a. given by

* - nae 1 /m . (1-35)

Now .j - */:8o. and Eqs. (1-32) and (1-33) may be vritten as

as I1 L¶ s 1 (1-36)
g .. (1 + ( C, )

- [ LI + (woZ] (1-37)
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Typical values of the relaxation time t. are on the order of 10-14

SeC

I. is easily shown that Eq. (1-36) can be written in terms

of R"

1' = 1 - a" (w') (1-38)

This equation shows that, for all frequencies significantly below

the visible and infrared (i.e., the microwave region), I'l (<

Isl '. Also, from Eq. (1-37), we see that a'' goes to its low

frequency value s"= a/weo for (WT) 2 << 1.

The reason for the above analysis is to determine whether or

not the Drude model can be utilized at low frequencies. Although

the low frequency value of a' differs significantly from a value

of unity, 7hich is normally assured for metals, the ratio

1a'"/s'a will always be very large when (w-) 2 (< 1. Therefore,

the use of the Drude model throughout the region 10-6 m e 0o <

10 m appears to be justified, and we feel confident in using

Eqs. (36) and (37) in the derivation of the electromagnetic crcss

sections throughout this entire wavolength range for appropriate

materi als.

17



1.5 The Reduced Conductivity

When one or more dimensions of a conductive material (metal

or semiconductor) are on the order of the mean free path of the

conduction electrons, electron collisions with the surface will

significantly reduce the mean free time, and hence the mean free

path A given by

A = vF, (1-39)

where vF = Fermi velocity and v = relaxation time discussed

previously. Since the electrical conductivity is proportional to

c (see Eq. -35), the conductivity will also be reduced.

The classic work on this subject was done in 1938 by

Fuchs. 19 In a more vecent paper, Dingle review& the subject and

provides some useful numerical computations.2 0  The key equation

in Dingle's paper is his Eq. (2 .3) which relates the effective

conductivity a to the bulk conductivity uo, as a function of mean

free path, wire radius a. and the quantity e that is the

probadi_,ity of au elastic collision at the surface:

[1o [ - (1 - e) A)] (1-40)

A value of a = 1/2 is frequently used as the surface scat-

tering coefZicient. Taking this, we have

3 A (1-41)c' = 0 [i - •" (-)] ,( -4 )

1a
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We have had difficulty in obtaining numerical values for sean

free paths from the literature. However, Kittel2 l provides a

good backgrounid as well as quantitative data for a numbe~r of

me talsa. Taking copper ts the subject material, a value of

4 .2 x 10 8 a is given in Table 10.1 of Kittel's book. Using Eq.

(1-39),. and taking the Fermi vel oci ty vF = 1 .6 x 106 mn/secc2 one

obtains a mean f ree time of v~ = 2 .6 x 10-14 seac . This is in

f airly good agreement with the accepted val-s 'c - 1 .9 x 0' 1

se0c .

Utilizing the above value, one gets for copper

a o0 [1 - .9 x a_10__9 (1-42)

where the radius a has the unit of meters. This equation shows

tkiat, if a - 1.6 x 10S -8 (¶60I Angstroms), the conductivity is

roughly half its bulk value. If the radius is 0.1 micron, the

conductivity is 92% of the bulk value. This ezeriise was done to

show that, indeed, one must consider the particle size effect

C upon electrical conductivity, when computing absorptive and

extinction properties of thin metallic fibers or films.

19



1.6 kuieorieal Results for graphite and Xrom

The precedAng theory has been reduced to computer codes

including graphical outputs, and some numerical results are

presented here for the two cases of graphite and iron. It should

be noted that, as part of our AFOSR contract, we have received a

Rowlett Packard RP 9000 Mod. 520 computer. which is employed for

all vomputations.

Considering first graphite, the sequence of operations is as

follows: Taking a bulk conductivity of 105 mho/m and mean free

path of 1.4 x 10-9 m, the reduced conductivity is obt.ained from

Eq. (1-41) upon specifying the fiber radius. Using tkis result

and further assuming an electron relaxation time of 1.4 x 10-15

sec., the complex optical dielecttic constant is obtained as a

function of frequency from Eqs. (1-36) and (1-37). Tle surface

impedance of the fiber can now be computed from Eq. (1-2), &t

which point the scattering computations can be carried out.

Some typical I-plane differential scattering patterns for

graphite are shown in Figs. 1-2 thru 1-4. The fiber has radiuj

of one micron and length of 110 microns. The incidenr wavelensth

is 30 microns, so that kh - 12 and the fibor is several

wavelengths 1ong. The angle of incidence ranges progressiv-,ly

from broadside to near end-on aspect in the three figures, and as

one would expect a fairly laige main lobe is seen in the forward

direction in all cases, with such smaller side lobes i.v other

directions.
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DIFFERENTIAL SCRTTERING
Crosa sscticn'lamda^2 vs Scattering angle

Ymax

Thet% Inc. (deg.)-?.OE+01
I Radius (m)-.OE.0~6

Length (m)-l.tE-04
Wavelength (m)-3.2E-05
Condýctlvity (mho/m)-l.OCEf5
kh-1.2EC01

. Ymax-2.?E-01

.2

90 l0 0 -f-158 1e

Figure 1-2. Differential scattering pattern is shown vs.
scattering angle for a graphite fiber (normal

incidence).

DIFFERENTIAL SCRT7ERING
Cross section/) amda-2 vs Scattering angle

Theta Inc. (deg.)-6.OE,.O1
Radius (m)-l.OE-06

L2ngth (m)i.lIE-04
Wavelength (m)-3.E-e5
Conductivity (mho-"m)-l.2E*05

"* j Ynmax-2.4E-01

.4-.2 l2EO

0 30 P s o9 120 150 160

figure 1-3. Differential Scattering pattern is shown vs.

scattering angle for a graphite fiber (incidence

at 60 dog. from the axis).
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The integrated cross sections (scattering, absorption and

extinction) are shown for the same graphite fiber in Fig. 1-5,

for wavelengths ranging from one micron up to 10 on. It should

be noted that we have done a planar-averaging (fiber axis in the

plane formed by the incident and observation directions). The

full random orientation results are obtained by reducing the

curves in the figures by an additional 3 db. Note that the

extinction cross section is precisely equal to the sun of the

scattering and absorption cross sections at all wavelengths, as

discussed earlier. Low frequency Rayleigh behavior, (1/]L)4 for

the scattering and (1I/).)2 for the absorption, is clearly evident

at the longer wavelenbths. At short wavelengths, the scattering

cross section becomes dominant.

The corresponding integrated cross sections for a graphite

fiber slightly larger in diameter and about ten times longer are

shown in Fig. 1-6 (see figure for precise dimensions). As one

would expect, the peak values of all the cross soctions now occur

at wavelengths ton tines greater, although the magnitudes of the

peaks are virtually unchanged.

The different methods of computing absorption cross section

are compared in Fig. 1-7 for a small graphite fiber (radius -

0.02 microns, length = 16 microns). The Galerkin (or varia-

tional) results correspond to the curve with oacillations at the

shorter wavelength end of the spectrum, similar to the results

seen earlier. The extended quasistatic approximation is seen to

match the variational curve identically at the lower frequencies
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DIFFERENTIAL SCATTERING
Cross sectien/lswmda2 vs Scattering angle

Ymax,

Theta Inc. (deg.)-3.eE+8i
Radius (m)1I.BE-0

6

Length Cm)-.1.IE-04
.9 Wavelength Cm)-3.SE-0S

Conductivity (mho'm)-I.0E+05
kh-1.2E.Si

at 30 deg. from the axis).

PLOTS OF ELECTROMMGMETIC CROSS SECTIONS VS t4VELEMGfl4

Program: JNP
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& PARAP1ETERS
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-6 -5-4 lag~leada) -3 -2 -

Figure 1-5. Log-lor, plot is given of the cross sections vs.
wavelength for a graphite fiber (length 100
microns$).
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Figure 1-6. Log-log plot is given of the cross sections vs.
wavslength for a graphite fiber (length 1000
microns).
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I .JNP EQS _INF
Inf inite cylinder Gr tph it

29 Jun 1987

a variational

" PRARMETERS
It• r •di•us-2, is-B

1ength-I.GE--5
tend. -I.OE£+15

t4u-1.4E-15
m~fp.-1.41Z-19
tniis(sel' 149
mner-lS.B dieg

klB 
nar_15.0 f o r

3 , j 1t1 1l l 1 . .I I I ... I Il I I total

--6 - -- 4 log ( Ildt ) 1 -- --2

Figure 1-7. Log-log plot is given of the absorption cross
section vs. wavelength for a graphite fiber,
comparing the variational result with the EQS and
infinite cylinder approximations.
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up to about kL - 2x (A - 1.6 a 10-S a) and continues to follow

quite well at higher frequencies. The high frequency infiaite

cylinder approximation (shown beginning at kt - 1) also gives a

good fit to the variational curve, although it is slightly

higher.

The corresponding curves are shown in Fig. 1-8 for the same

fiber whose length has boon increased by a factor of eight.

Rebults are completely analogous to those of Fig. 1-7. although

ol course the Rayleigh region has now moved offacale to the

right, and high frequency oscillations of the variational curve

are maaL more rajpid.

Turning now to the case of iron fibers, one has bulk

conductivity of 107 shos/a and mean fzee path of 3 x 10-11 a.

From Eq. (1-41) one sees that the bulk conductivity requizes no

correction this time, even for wire radii as small as 10-8 a.

Choosing an electron relaxation time of 4.0 z 10-15 sec., the

complex dielectric constant is again obtained as a function of

frequency from Eqs. (1-36) and (1-37).

The differential soattering patterns for iron are shown in

Figs. 1-9 thru 1-11 for broadside, 60 and 30 del. incidence,

respectively. Comparing with the earlier Figs. 1-2 thru 1-4 for

gralphits, the angular distributions are seen to be quite similar.

The peak cross sections per square wavelenjth are seen to be

smaller for ironaby about 2 1/2 orders of magnitude (compare the

respective values of Y in the figures), but on the other band,

as2
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Figure 1-8. Log-log plot is given of the absorption cross

sectiou vs. Wavelength for graphite fibers
compazing the variational result with the EQS and
infinite cylinder approximations.

DIFFERENTZRL SCATTERING
Cross sction/lcnmd-2 vs Scattering angle
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Conductivity (mho.'m)1• l+6?
kh-1t.4E+01
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Figure 1-9. ]Differential scattering pattern is shown vs.
soattering anglo for an irost fiber (normal

incidence).
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DIFrERENTIRL SCATTERING
,ý .Croess e*ctton/lamda"2 vs Scattering angle

Theta Inc. Cdeg.).S.SC4Il
Raillus m.bCU
tLength )5S. K-4S S.I HWavelength (.)*l.' E-0
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kh" 4C*481
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Piguzj 1-10. Differential soattering pattern it Shown vs.

scattering angle for an iron fiber (incidence at
60 dog. from the axis).
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Cross sec~ton/lamda•2 vs Scattering angle
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Figure 1-11. D;fferentia& scattering pattern is shown vs.
scattering angle for an iron fiber (incidence at

30 deg. from the axis).
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the actual fiber volume for iron has been reduced by about 5 1/2

orders of magnitude, so that on a per unit volume basis iron

scatters much more efficiently, as one would expect.

Orieatation-averaged cross sectioas for iron fibers are

shown in Figs. 1-12 thru 1-14, for progressively longer fibers

again with radius .01 microns. For the shortest fiber, length -

5 microns, shown in Fig. 1-12. the absorption oross section is

seen to rise vs. frequency and peak fairly sharply in the

vicinity of kL - x. The scattering cross section is quite

negligible in comparison, except at the shortest wavelengths, and

consequently the absorption and extinction curves are practically

indistinguishable. The dashed curves give the quasistatic

approximations, which are seen to be excellent for kL t. a. The

approximate absorption cross section matches the variational

computation very well up to about kL - x, and is somewhat higher

at the shorter wavelengths. similar comments apply for the

approximate soattering cross seotion, although the latter has

been out off and is not expected to apply beyond kL - x.

Results are similar when the fiber length is doubled, as

shown in Fig. 1-13. although the peaking of the absorption (and

extinction) cross section is not juite so pronounced. When the

fiber length is increased by a further order of magnitude (Fig.

1-14), the rise to peak values is seen to occur at such longer

wavelengths, as one wouI1 of ccurse anticipate, and the

absorption (and extinction) cross section now shows a broad

plateau extending over more than a decade in frequency.
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Figure 1-12. Los-log plot is given of the Gross sections vs.
wavelength for an iron fiber of length 5 microns
(dashed curves are quasistatic approximiations).
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Figure 1-13. L~og-log plot is given of the cross sections vs.
wavelength for an iron fiber of length 10 microns
(dashed oruves are quasistatic approximation*).
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It is interesting that, aside fron the more rapid

oscillations occurriag for the longer fibers in the short

wavelength region, due to partial dependence on triges onetric

fncations of argument kL, the crose sections are effectively

independent of fiber length at the shortest wavelengths.

Some sample oomputati one of absorption cross section for

iron are shown in Figs. 1-15 and 1-16. The fiber radii are 2 and

8 microns, respectively, and the length is 64 microns in both

cases. The absorption computed by the variational method is

similar to rsults above, shoving a peak at a wavelength of about

100 microns. In Fig. 1-15, the extended quasistatic curve tracks

the variational resalts fairly well except at the shorter

wavelenSths, where it does not decrease as it should (the reason

for this discrepancy is not presently understood). The infinite

cylinder approximation, on the other hand, does reasonably well

at the shorter wavelengths. For the larger fiber radius of Fig.

1-16, both of the approximate computations are seen to be in

reasonably good agreement with the variational result.

It is straightforward to compute the cloud mass per square

aster required to produce a 20 db target signature reduction,

using either graphite or iron particles. The signal decays

exponentially within the cloud, and a 10 db reduction on each leg

of the round-trip path requires that

-n3 LextL
ext c 0.1, or

(1-43)
nN extLc W 2.3,
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Figure 1-14. Log-log plot is given of the cross sections vs.
wavelength for an iron fiber of length 100 microns
(dashed curves are quasistatic approximations).
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Figure 1-15. Log-log plot is given of the absorption cross
section vs. wavelength for an i r on f ibear,
comparing the variational result with the EQS and
infinite cylinder approximations.
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Figure 1-16. Log-log plot is given of the absorption cross
section vs. wavelength for an iron fiber,
comparing the variational result with the EQS and
infinite cylinder approximations.

32



where n is the number of fibers per unit volume and L, is path

length through the cloud. We include an additional fact, r of 1/2

in the extinotion cross sections 'd ivon earlier, so that all

polarizatiou and (random) orientation off cts ore now completely

accounted for. Strictly speaking, Eq. (1-43) assures that

absorption dominates over scattering for the single particle. If

this is not the case then multiple scattering effects must be

more carefully accounted for, using the radiative transfer

analysi3 to be discussed shortly.

For a section of the cloud, having cross-sectional area Ac

and length Lc, the total mass of fibcrs M is given by

M - AcLc IVP Pp, (1-44)

where Vp is the volume of a single fiber and pp its density. For

the case at hand, setting Ac - 1 m12 and substituting in from Eq.

(1-43) gives

M - 2.3 prI(1ezt/Vp). (1-45)

Lj

Using this; result, from the extinction cross section per unit

volume data of Fig. 1,-5, and taking a density 4 Sm/cm3 for

graphite, one obtains the mass requirod at various wavelengths as

listed in Table .- 1. Note that the values in parentheses may be

underestimates because the fibers are not primarily absorbers at

those wavelensths (see Fig. 1-5).
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Significantly less mass is required employing iron fibers,

as can be seen from the last column of the table. Mere we

employed the data of Fig. 1-14, assuing pp - 7 gm/cm3 for iron.

Note that the increase in density is more than compensated by the

higher conductivity, which in turn allows one to employ a greatly

reduced fiber radius.

Table 1-1. The mass of graphite or iron fibers required per
square meter of cloud cross section for a 20 db
reduction in signal strength (values in
parenthesis may be underestimates; see text).

Wavelenath X (a) Mass of graphit l. mass of iron (am)

10-6 (180) (1.8)

10-5 (35) 0.079

10- 4 (6.3) 0.027

10-3 72 0.025

10.2 7500 0.16

10- 1 -- 10

34



1.7 Radiative Teaaafer im Fiber Clouds

In order to compute the transmission and reflection by a

cloud of fibers, including multiple scattering effects, we employ

radiative tramnfer techniques, using a computer program developed

earlier. 1 2 '2 3  Essentially, the computation employs the van do

Halst doubling method in a slab geometry, with Taylor series

reprosentation for the thin-layer starting values of the

transmission and reflection matrices.

For a cloud of identical fibers randomly oriented, as

considered here, the re.quired inputs from the single-scattering

results are the albedo (ratio of scattering to extinction cross

section) and the differential scattering pattern of the single

fiber. The calculation has been carried out for both graphite

and iron, assumiug monochzomatic radiation normally incident on a

slab region containing the fibers. In each case both wavelength

and fiber dimensions are chosen so that the scattering and

absorption cross sections are roughly comparable. Results will

be given for selected values of the optical depth of the slab

(optiual dept?, is obtained by multiplying the thickness by the

aumbet. oi fibers per unit volume and the extinction cross section

of one).

C:onsider Cikxst graphite. For an iucident wavelength of 30

miccont and particle diveksinons as listed in Fig. 1-17, tb,

fracticns of incident energy reflected from the front

(illuminated) face sud tansmitted through the back (shadowed)
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face are *hown in the figure as a function of p - cos 0, where 0

is the scattering angle measured from the original incident

direction. Optical depth is 0.5 in this instance. Note first

the delta-function behavior (truncated at unity for clarity) of

the transmitted power in the forward direction p - 1. This

represents the coherently transmitted term which has been neither

scattered or absorbed. Aside from some minor fluctuations, the

bolance of the transmitted flux is seen to b. essentially

isotropic, as is the reflected flux, although both tend to be

slightly higher in the grazing directions (p - 0).

Figures 1-18 thiu 1-20 give the oorrospon4ing results with

8socasive doublings of the slab thickness, holding all other

parameters fixed. The transmitted flux is seen to gradually

decrease, as one would expect, and in addition, become

concentrated more in the forward directioa. Note that the dolta-

function contribution is difficult to ascertain graphicelly.

This is no problem, however, because we know apriori that the

fraction of coherently transmitted flux is given simply by eo-

(v - optical depth). The reflected flux distribution is soon to

become constant at the largest optical depths; this is of course,

just the distribution one would obtain from an infinitely thick

slab.

These curves have been integrated to obtait the total

fractions of incident flux reflected and transmitted, and the

results are listed in Table 1-2. In each case, of course, the

balance of the incident flux is absorbed within the fibers. The
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Figure 1-17 *The reflected and transmitted intensities are
plotted vs. cos 0 (0 is the scattering angle) for
a cloud of graphite fibers of optical depth 0.5.
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Figure 1-18. The reflected and transmitted intensities are
plotted vs. cos 0 (0 is the scattering angle) for
a cloud of graphite fibers of optical depth 1.
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Figure 1-19. The reflected and transmitted intensitiet are
plotted vs. cos 0 (0. is the scattering angle) for
a aloud of graphite fibers of optical depth 2.
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Figure 1-20. The reflected and transmitted intensities are
plotted vs. aco 0 (0 is the scattering angle) fcr
a cloud of graphite fibers of optical depth 4.
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Table 1-2. The fractions of (integrated) ref-leoted and
transmitted flux are givea vs. optical depth for a
cloud of graphite fibers (albedo - 6.6S).

Oqtioal Death Reflected flua TtaasmittLed flux

0.5 0.083 0.729

1.0 0.120 0.521

2.0 0.145 0.257

4.0 0.151 0.058

8.0 0.152 0.003

total reflected portion is seen to saturate at about 15% for the

thicker slabs. It is also interesting to note that for the

thickest slab the coherent term makes only a neuigible

contribution to the total transmitted fluz.

The corresponding results for a cloud of iron fibers are

shown in Figs. 1-21 through 1-24, this time using an incident

wavelength of 1.1 microns and appropriately reduced fiber

dimensions, as listed in the figures. Most of the comments made

above in connection with graphite are seen to apply here, also,

but there are two significant changes. First, the reflected flux

pattern is seen to be somewhat weaker and has already become

effectively independent of slab thickness at an optical depth of

O.S. Second. the transmitted flux falls off much faster with

increasing thickness. Both of these changes are attributable to

the smaller albedo encountered, which is of course,, just another

way of saying that absorption has become doinant over scattering

in this case.
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Figure 1-21. The reflected and transmitted intensities are
platted-Va. Cos 0 (0 is the scattering &1ngl6) for
a cloud of iron fibers of optical depth 0.5.
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Reflection Transmissiont
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Figure 1-22. The reflected and transmitted intensities are
plotted vs. Cos 0 (0 is the scattering angle) for

a cloud of iron fibers of optical depth 1.
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Figure 1-23. The reflected and transmitted iatensities are
plotted vs. coo 0 (0 is the soattering angle) for
a *load of iron fibers of optical depth 2.
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Figure 1-24. The reflected and transmitted intensities are
plotted vs. coo 0 (0 is the scattering nagle) for
a cloud of iron fibers of optical depth 4.
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4, The ooorespoadiag integrated fluxes for icon are listed vs.

Soptical depth in Table 1-3. One seos from the table that the

total refloated flux indeed ohaoges very little with increasing

slab thickness, and at the sane time the transmitted flux is

somewhat smallor and falling off more rapidly than in the earlier

Table 1-3. Tko fractions of (istego ated) refloated and
transmitted flux ate gives vs. optical depth for a
cloud of iron fibers (albodo u 0.352).

Ontical Depth !oflocto4 Sluz Transmaittod fLMj

0.5 0.042 0.659

1.0 0.055 0.427

2.0 0.062 0.176

4.0 0.063 0.028
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SUCTIW 11. THRMKAL RADIATION BY SUMI PARTICLES

2.1 Introduction

In the calculation of electromagnetic scattering and absorption by small

particles having at least one dimension on the order of the wavelength of the

incident radiation, it is not uncommon that the absorption (as well as the

scattering) cross section can be significantly greater than the projected area

of such particles. This is easily understood from the electromagnetics point

of view and causes no serious concern. However, if we consider the thermal

radiation from such a particle, ime interesting questions arise with respect

to its thermal emissivity, its thermal radiation spectrum, and the connection

between such radiation and classical radiation theory. The purpose of' this

paper is to address these questions and to propose a quantitative model for

the calculation of the electromagnetic radiation spectra of small absorbing

particles. Of particular interest will be particles of the type discussed in

Section I, namely thin conductive cylindrical particles havir~g large

absorption efficiency factors.
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2.2 Classical Radiation Theory

In this section we summarize those aspects of the classical theory of

radiation that are pertinent to the discussion to follow.

Thermal Equilibrium. Take the classical case of a perfectly insulated

spherical cavity whose temperature is T and whose wall absorbs 100% of all

radiation incident upon it. If all elements of the wall are to be in thermal

equilibrium, tbin each element must radiate 100% of the radiation incident

upon that element. Since this must be true at all temperatures, it follows

that the absorptivity a and the emissivity c of the wall must each be equal to

unity. The resulting radiation is well known as blackbody radiation, whose

spe:tral distribution is given by the Planck Radiation Function.

To summarize,

*bb- ebb - i, (2-1)

where bb is taken to represent blackbody properties.

The Planck Radiation Function is given by:

2wc2h

Wbb(A'T) -5(ehIAk i) (2-2)

where c-speed of light, h-Planck's constant, k-Boltzmann's constant,

A-wavelength, and T-absolute temperature. With the insertion of an
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appropriate constant (10"10) , the units of Wbb are the usual

watts/m 2-micron, assuming that Eq. (2-2) is originally evaluated in MKS

units.

The intensity of the radiation emitted by a blackbody is the integral over all

wavelengths of the Planck Radiation Function:

Ibb(T) - JWbb(,T)dX. (2-3)

The total power radiated by the blackbody is obviously the product of the

radiant intensity and the area Abb of the blackbody:

Pbb(rad) - Abblbb watts. (2-4)

Kirchoff's Law. Next, place within the cavity a body having area A and

wavelength dependent absorptivity a(A) and emissivity e(A). Since the radiant

flux is uniform within the cavity, the power absorbed by the body is given by

Pabs - A[n(A)Wbb(X'T)dA. (2-5)

which are that these quantities are th3 ratios of absorptance and emittance,

respectively, to those of a blackbody.
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Note that, in Eq. (2-5), we have used the same temperature T as for the

(blackbody) walls of the cavity. This is essentially the definition of

thermal equilibrium, namely that two bodies in thermal equilibrium must be at

the same temperature.

The power radiated by the body is

Prad - AJe(A)Wbb(A'T)d." (2-6)

0

The important consequence of the above discussion is that, if the body is in

thermal equilibrium with its surroundings, its absorptivity and emissivity

must be equal at all wavelengths. This is true because, in thermal

equilibrium, Eq.'s (2-5) and (2-6) must be equal for any v&lue of temperature

T.

Therefore,

QM - CMA). (7)

Equation (2-7) is what we might term the "detailed" statement of Kirchoff's

law of thermal radiation. One usually sees this in the form of the average

values of a and e. Since (2-7) is crucial to the subsequent treatment, it was

developed in what we believe to be a simple but fundamental manner.
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2.3 Microscopic Particles

Absorbed power. The power absorbed by a particle at any specified wavelength

A is, by the definition of the absorption cross section, the producc of the

incident radiant intensity and the absorption cross section. If wavelength of

the incident radiation is Xot then

P abs " o( xo0)aabs ( Ao) "(2-8)

In the more general case, if the incident radiation occurs over a spectrum of

wavelengths, we .must use the integral form of (2-8):

Pabs - Jabs(A)Winc(\)dA\ (2-9)

0

where Winc(A) is the intensity spectrum of the incident radiation.

The absorption efficiency factor is defined as the ratio of the absorption

cross section of a body to its projected area Ap

Qabs(A) - aabs(A)/Ap (2-10)

Rewriting Eq. (2-9),

Pabs - AplQabs(A)Winc(\)dA\ (2-11)

0
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Note that Qabs(A) for the particle in Eq. (2-11) replaces a(A) for the

mcroscopLc body in Eq. (2-5). We write explicitly,

C(A) - Qabs(A)' (2-12)

Since, in Eq. (2-7), we have shown that *(A) - c(A) for any body, it

directly follows that

S(A) - Qabs(X)) (2-13)

Radiated Power. The power radiated by the particle is therefore given by

Prad ' ApJQabs(A)Wbb(A'T)dX' (2-14)

I. 0

where A- total area of the particle.

In the steady state, the power radiated by the particle is equal. to the power

absorbed. Therefore, Eq.'s (2-11) and (2-14) must be equal. Equating these

provides the expression for total radiated power by the particla, as a

function of the incident radiation spectrum:

P ApQabs (Ainc (A)dA Ap[Qabs(A)Wbb(1,T)dA. (2-15)
J o
0 0
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Using the expression (2-2) for Wbb, we obtain an expression involving only

the temperature of the particle , its geometry (A and A ), and the

integrated spectrum of the incident radiation:

21rc 2h
AJQb( 2)(hkT A pQabs)(A)Winc)(,)dA, (2-16)

+ as) h eff) -1)
o 0

where we have used Teff in place of T, as discussed in the following

section.

Equation (2-15) has the units of intensity. In the case of monochromatic

incident radiation at wavelength Ao, we can write:

A[Qbs(A)-- •c'he.XkT,- Ap~bz('Xo)Iinc('Xo). U2-17)

+ (a o/kTff) - pn

Equations (2-16) and (2-17) can be use.- to compute the radiati.ng temperature

of the body, as a function of its wavelength dependent absorption efficiency

factor and the spectral content of the radiation incidcnt upon it. Also, the

integrand of these equations is the thermal radiation spectrum of the body.
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2.4 Interpretation

Eminsivity. Equations (2-16) and (2-17) are valid, regardless of the

numerical values Qabs* In particular, as we have shown, when Qabs is

larger than unity, the emissivity is correspondingly large. If one considers

this from the thermodynamics point of view, some questions arise, such as "How

can a radiating body have an emissivity greater than that of a blackbody?" The

following is a brief discussion of why this is not an unreasonable

circumstance.

In the steady state, the particles comprising the body are elevated to higher

energy states by virtue of absorption of power from the incident wave. The

body loses energy at this same rate by virtue of the (presumably) random

emission of photons as the excited particles drop into lower energy states.

In the case of a 'macroscopic' body, all of whose dimensions are very large

compared with all wavelengths of importance, it is easy to understand how the

emissivity must be dependent only upon the composition of the body. However,

in the case of the 'microscopic' body, its gemer also plays an important

role in the wovelength dependent probability of emission of photons. Why

should this be so?

The answer is that the same geometrical properties that cause the body to

absorb electromagnetic energy at a rate proportional to its absorption cross

section, similarly influence thermal radiation by the quantum mechanical

system of particles. A detailed analysis of this problem would involve the
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full quantum mechanical treatment of the syctem of particles, in which the

I' geometry of the body would necessarily be included.

If we think about the absorption from the point of view of Maxwell's

equations, but consider the radiation from the quantum mechanical point of

view, the picture can be quite confusing. The particles under consideration

here behave in some respects like macroscopic bodies and In other respects

like quantum mechanical systems having absorption and emission spectra

determined by the modal constraints (which depend upon the composition as well

as the geometry) of the specific particle.

From the quantum viewpoint, If the dimensions of the body were all on the

order of an optical (radiating) wavelength, only certain wavelengths of

absorption and emission would be permitted. As, e.g., -one dimension is

increased, the modal structure will become more complex. At a sufficiently

large dimension, the transition probabilities overlap and the body exhibits a

continuum in its emission and absorption spectrum.

The case of coherent incident radiation and incoherent thermally emitted

radiation would not pose a problem if the analysis were carried out at a

sufficiently fundamental level.

Temperature. The temperature appearing in Eq. Is (2 -16) and (2 -17) can also

lead to some questions regarding its precise meaning. We believe that there

is no question about its meaning when we consider the thermal radiation from

the body. -But, is this the "thermodynamic" temperature that one could in
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principle measure with a thermometer? This question is analogous to that

cited above with respect to the emissivity. The body under consideration has

some propertion that are most easily considered from the macroscopic

thermodynamic point of view and other properties that must be thought of from

the quantum point of view. The concept of "temperature" arises from the

assumption that one is dealing with a body of sufficiently large dimensions

that the use of macroscopic thermodynamic quantities is appropriate. To avoid

possible contradiction, we will, use the term "effective radiating temperature"

T eff in the discussions to follow, and as I-n Eq.'s (2-16),(2-17).
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fr 2.5 Computational Procedure

In this section, we present computational results obtained through the use of

the foregoing theoretical treatment. Note that, in the use of Eq.'s (2-16)

and (2-17), one would normally be provided with that information needed to

reduce the RHS of (2-16) or (2-17) to a number. The mathematical problem is

to find that value of Tef in the integral that satisfies the equation.

Te procedure in the simpler case of monochromatic incident radiation is as

follows:

(1) Compute Q abs (), 0 over a wavelength range sufficiently broad to

include Afas well as that of the thermal radiation by the

particle.

(2) Evaluate the RHS of Eq. (2-17).

(3) Perform successive numerical integrations of the LHS of (2-17) to

obtain a table and graph of Teoff vs I inc (Ao0). The wavelength of

the incident radiation must be explicitly provided.

(4) Choose a value of T eff from step (.2-3) by numerical interpolation or

from the graph, that corresponds to the incident intensity 1 0. This

value of T eff, and the wavelength of the incident radiation,

are input to the computer.

(5) The computer program computes and plots the radiated intensity or
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power spectra, the intensity of the incident radiation (watts/cm2),

and the analogous blackbody 1) intensity or power spectra.

In the case of illumination over a wavelength spectrum within which Qabs(A)

undergoes substantial variation, Eq. (2-16) would be used to compute Toff vs

fQabs(A)W(A)dA over the incident wavelength spectrum. The latter quantity

is the average intensity of the incident radiation, and would be substituted

for 10 in step (3) above.

The accuracy of the numerical integration routines of (3) above is easily

checked by letting Qabs- 1 (blackbody) and comparing the numerically

evaluated integral with the analytic result of the Stephan-Boltzmann Law:

bb(5T)dA4
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2.6 Results

In order to carry out the computations outlined above, we must choose a

theoretical model for calculating the wavelength dependent absorption

efficiency factor Qabs(A). For simplicity, we will choose for this

discussion the Extended Quasistatic (E.Q.S.) model , which is described in

Section I. This model, although not as exact as the Variational technique

(discassed also in Section I), has the advantages of being analytic and of

utilizing shrt computer run times. In the case of engineering applications,

the E.Q.S. model would be first used to optimize the various parameters.

Having accomplished this, one would then use the Variational technique for the

final computations.

We first note that (E parallel to particle axis) in the parameter regime where

the absorption cross section is maximized (Lc"<l or L'e"<l, as the case may

be), the expression for the absorption efficiency factor reduces to

Qabs -> •aac Io/eop (Li" -> 0). (2-18)

Note that: (1) in this regime, the absorption efficiency factor is

proportional to the particle radius, a, and is independent of wavelength.

This fact can be utilized in the tailoring of the spectral emissivity of a

particle cloud e.g. graphite or iron. (2) The ratio a abs/Qabs is the

projected area of the absorbing particle, with respect to the direction of

the incident radiation. The results in Fig.(l) were obtained by assuming that

the incident E-vector is parallel to the particle axis. The implications of
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this will be discussed in a subsequent subsection. (3) For the assumed

cylindrical particles, the absorbed power is proportional to Ap-2al, while

K4 the radiated power is proportional to A-2wal.

2.6.1 Graphite.

Our first examples of small particulate radiation involve particles composed

of graphite. The first example will use particles having very small radii of

100 Angstroms. Such particles can be produced by, for example, chemical vapor

deposition2 . The conductivity of these is estimated to be 105 mho/m. The

estimates of mean free time and mean free path of 1.35X10" 1 5 sec. and

4X10" 1 5 m, respectively, were provided to N. Pedersen by I. Spain, Colorado

State University.

Figure 1 is a log-log plot of the absorption efficiency factor vs wavelength

for the graphite particles discussed above. The particle length was .ihc.-.n to

be 10 microns. Note that the coordinates each span five orders of magnitude.

The wavelength range is from O.lp to lcm. Note that the absorption is a

constant over the range from about 5p to about 5 millimeters. Note also that,

for this particular particle, Qabs<l at all wavelengths shown.

Table 2-1 and Fig.2-2 were computed and plotted*, as previously outlined, by

means of inserting a temperature Teff in Eq. (2-17) and solving for the

incident intensity I0. Note that the wavelength of the incident seam was

chosen to be Ao-m10.6 microns. This computation, involving numerical

integration of the LHS of Eq. (17), was carried out for each value of Teff

shown in Table 1. Also shown in the Table and in Fig.2-2 are the
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corresponding values of Io for an equivalent blackbody (Qabs -I at all

wavelengths). Since, as stated, Qabs<l, we would expect that Teff for

this particle would be greater for a given value of 10 than Teff for the

equivalent blackbody: The efficiency for absorption is greater at 10.6 microns

than it is at the shorter wavelengths. Therefore, the particle must be hotter

(relative to a blackbody) in order to radiate the same power that it absorbs.

From the above, it is clear that it is only the s of the Qabs(A) vs A

curve, and not its magnitude, that determines the curve of Teff vs

10 (Ao). Table 1 and Fig.2-2 are not strictly required for these

computations, but are provided to lend insight into the physics of the

interactions.

In Fig.2-3 are shown log-log plots of spectral emittance (in the usual units

of watts/cm 2-micron) vs wavelength in microns. The solid line represents

radiation from the graphite particle, and the dashed line is the usual Planck

blackbody spectral radiation curve. The input parameters are Teff- 2500

deg.K, and the wavelength of the incident radiation, Ao-10.6p, The incident

2intensity, 1 0(AX 0)-2600 watts/cm , is automatically computed.

The blackbody radiates at least an order of magnitude more efficiently than

the particle. This is because Qabs is on the order of 0.1 or less in the

radiation wavelength regime shown. The blackbody spectrum is skewed somewhat

towards the shorter wavelengths. This is because the absorption efficiency

decreases with decreasing wavelength for wavelengths smaller than -5p.
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Figure 2-1. Absorption efficiency factor vs wavelength for a 100
Angstrom radius graphite fiber.
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Figure 2-2. Plots of Taff vs I° from Table 2-1. Ao-10.6 microns.
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Lamda(inc)-I0.6 |ic¢roisi
RadtusIlE-S%
LengfhIlE-5er
Bulk condlEMwho.'m
n.f.p.r4E-I15

Tsau0. 35E-15ssc
6 Jul 1987

1o lo(blackbody,) Terf
(watts/cm-2) (watts/cm^2) (d*g.)

;.45E-01 - 1.44E-01 308
1.85E-91------- 8-.41------------ 319
2.34E-01 '-2.35E-SI----------- 339
2.97;E1-------- 3.01E-SI----------- 368
3.76E-01 ------ 3.84E-0I----------- 383
4.77E-01 ------- A.9E-0; ----------- 407
6.03E-1 .------ 6.26E-0I ------ 433
7.62E-1------- -..8.8E------------ - 465
9.62E-01------- . 1..82E÷+9 ------ 489
1.21E+8 ------- 1.30E+00 ----------- 520
1,53E+00 . . 1.67E+ ---------- 553
1.92E+00 ------ 2.13E+5 9----------- 588
2.42E+00 ------ 2.72E+882----------- 625
3.03F+00 ....... 3.4E+00..---------- 6- 4
3.0E+80 ------- 4.43E+00 ----------- -86
4.75E+00 ------ 5.66E+00 ----------- 751
5.93E+0 ------- 7.23E+00 ----------- 798

7.39E+0 --------. 9.23E+00 ----------- 848
9.19E+ .------- I-.E1+8 ----------- 90-
I.14E+01 ------- -- E+5 ---------- -959
141E.+01 ------ 1.92:-E+01 ---------- 1019
1.75E+01 -------- 2.45E+1 -93
2.19E+01 ------- 3.13E+,1 ------------ 1151
2.66E+01 ------- 4.E+01 ----------- - 1221
3.27E+01 ------ 5.112+013----------- 1391
4.91E+01 ------- 6.53E+91 ----------- 1383
4.91E+01 ------ 8.34E+81 ----------- 1470
6.09E+01 ------ 1.86E+02 ----------- 1563
7.32E+01 ------ 1.36E+02 ...........- 1662
O.YOE+01 ------- 1.74E+02 ----------- 1767
.08E02 .------- 2.22E+02 ----------- 1878

1.31E+82 2.83E+02 ----------- 1996

1.58E+02 ------ 3.62E182 ----------- 2122
1.90E+92 ------ 4.62E2+2 ----------- 2256
2.29E*02 ------ 5.90E+02 ----------- 2398
2.75E+02 ------ 7.53E+02 ----------- 2549
3.29E+92 ------ 9.62E+92 ----------- 2710
3.93E+92 ------ 1.23E+03 ----------- 2881
4.69E+02 ------ 1.57r+03 ---------- 3063
5.59E+02 ------ 2. +----3 ---------- 3256
6.64E+02 ------ 2.56E+03 ----------- 3462
7.87E+92 ------ 3.27E+93 ............- 3679
9.31E+02 ------ 4.17E+03 ----------- 3911
I.IOE+03 ------ 5.3sE+03 ----------- -- 158
1.39E+03 ------ 6 80E433 ----------- 4428
1.53E+03 ------ 8.69E+83 ----------- 4698
1.79E+03 --- 1.11--E+-4 ---------- 4995
2.111+93 ------ 1.42E+84 ---------- 5389

2.47E103 ------ 1.81E0-4 ---------- 5644
2.88E+03 ------ 2.31E+04 ----------- 6903

Table 2-1. Radtating temperature vs incident intensity. Thin graphite fiber.

C
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LOG(CHITTRNCE. watts/cm2-tmicron) vs LOG(WRVELENGTH. microns)
Effective Radiating Temp.- 2500 deg.K
Lmmda( inclient)-,|.6 microns
Incident intensity-2.6E+02 watts/cm•2

"a- ..... ackbady Spectrum
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Figure 2-3. Radiant emittance of the 100 Angstrom radius graphite fiber.
Effective radiating temperature - 2500 deg. K.
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,E~4ctive Radiating Temp.- 1588 deg.K
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* D~akbodySpectrum
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Figure 2-4. Radiant emittance of the 10C Angstrom radius graphite fiber.
Effective radiating temperature - 1500 deg. K.
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We next lower the temperature Teff to 1500 deg.K (Fig.4). The required

incident intensity at Ao-10.6p is correspondingly reduced from 2600 to 52
watts/cm2. The radiation spectra of tha particle and the equivalent

blackbody are significantly reduced in magnitude and are shifted towaids the

longer wavelengths. The curves are more nearly equal in magnitude because

Qabs(A) is more nearly equal to unity for these radiating wavelengths than

in the case of Teff-1500 deg.

Figures 2-5, 2-6, and 2-7 are similar to Figures 2-3 and 2-4, except that the

values of Teff (and the corresponding Io(A.)) are lowered to 1000, 500

and 300 deg.K, respectively. The ratio of particle emittance to that for the

blackbody is ezsentitlly the same for Teff- 500 deg.K and 300 deg.K. This is

because Qabs is essentiially constant over the radiation spectra for both

values of T eff
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Figure 2-5. Radiant emittance of the 100 Angstrom radius graphite fiber.
Effective radiating temperaturo - 1000 deg. K.
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Fignre 2-7. Radiant emittan~ce of the 100 Angstrom radius graphite fibe-C.
Effective radfating temperature - 300 deg. !K.
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It is next instructive to see what happens to the thermal radiation spectrum

when Qabs(A) exhibits more structure chan that shown in Fig.2-1. For this

purpose, we choose a graphite particle of the more conventional variety,

having a length of 1 millimeter and a radius of 1 micron. At the short

wavelengths, the correspondingly large values of (ka) give rise to the

resonance shown in Fig.2-8. Note also that the enhancement of Qabs' as

predicted by Eq.(18) is seen at A-3 millimeters.

Figure 2-9 (10 vs Teff) is analogous to Fig.2-2, but shows,as e:pected, a

much larger deviation from the blackbody curve of Fig.2-2.

The plots of radiation spectra for this particle, with Teff (and therefore

!o) as the incremented parameter are shown in Fig.s 2-10 through 2-13. In

the case of this particle, it is easy to see how the form of Qabs(A) is

reflected in the radiation spectrum. It is particularly interesting to

observe that, at the highest temperature, i.e. Teff- 2 500 (Fig.2-10), the

particle radiates as though it were much cooler, as compared with the

equivalent blackbody. At the lower temperatures, e.g. Teff-500 (Fig.9), the

radiation spectrum (neglecting the cusp) has essentially the same shape as a

blackbody at the same radiating temperature.
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Figure 2-9. Plots of Teff vs 10 for the I micron radius graphite fiber.
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Figure 2-10. Radiant emittance of the 1 micron radius graphite fiber.
Effective radiating temperature - 2500 deg. K.
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Figure 2-11. Radiant emittance of the 1 micron radius graphite fiber.
Effective radiating temperature - 1000 deg. K.
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Figure 2-12. Radiant emittance of thle 1 micron radius graphite fiber.
Effectiv, radiating temperature - 500 deg. K.
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Figure 2-13. Radiant emittance of the 1 micron radius graphite fiber.
Effective radiating temperature -300 deg. K.
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Also of interest are very fine 1.ilament of iron. We therefore include herein

an example of the radiative properties of such a particle having a radius of

100 Angstroms. For purposes of illuIstration of the potentila. for broadband

screeni-ri (via absorption), we have selected a filament length of 100 microns.

Figure 2-14 displays the absorption efficiency as v. function of wavelength.

Note that t/e curve is quite similar to that 2oz 100 Angstrom radius graphilte

(see Fig.2-1). extept that the maximum value of Qabs is 10OX that for

graphite. This is because the electrical conductivity of the iron is taken to

be ac-10 mho/m, while that for graphite was assumed to be 105 mho/m.

In Fig.2-15. we see that the plot of Teff vs 10 is essentially the same as

that for the 100 Angstrom radius graphite. This is because, as mentioned

previously, the shapes of the Qabs(A) curves (but not their magnitudes)

are the sama.

In Fig.s k-16, 2-17, 2-18,afid 2-19 the values of Teff are 1500 (the maximum

permissible), 1000, and 500 deg.K, respectively. The following comments are

of interest: (1)The shapes of the radiation speccra are essentially the

same as for the thin graphite example (Fig.s 2-4 through 2-7). (2).The

required incident intensity I1 is nearly the same in the irrn vs graphite

cases (38 vs 52 watts/cm2 at Toff-15 0 0 deg.K)). The reason for this is

apparent from inspection of Equation (2-17). (3# The magnitude cf the

emittance is greater by a factot of -10OX for the iron vs the graphite.
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Figure2-14. Abaorptiori effic' -ency factor vs wavelength for c 100 Angstrom
radiu~s iron fiber.

4 PLOTS G1V LOGCTe ff ( d...-)) vs LOGClo~watt4/tm-2))~vlnth of Incident radi~tior. 10.6 microns

3 ~ ~

-1 0 1 2 3 A5

Figure 2-15. Plot of T eff 'vs I0 for a 100 Angstrom iron fiber. A,-1O.6j&.

69



LOG(EMITTRNCC. vat~m.-alrr)a LOG(WRVCLENGTH. microns)
-ftective Radiating Temp.- 1S50 deg.K

• . ~Landak(Inctdent),-|9,6 microns

Iniet itensity-.ee.kt61 wattid'Cfli2

----- 1 ackbody Spectrum

A'

% % PRRRMETIERS (mks) :

"t •\ % Longlh- 1--4 m

%% Tau-,t- 15 set

-. k I f I I

Figure 2-16. Radiant emittance of ths 100 Angstrom radius Iron fiber.
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Figure 2-17. Radiant emittance of the 100 Angstrom radius iron fiber.

Effective radiating temperature - 1000 deg. K.
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2.7 Applications

In this subsection, we consider some interesting applications of the foregoing

treatment. These include various radiative and absorptive effects associated

with electromagnetic radiation incident upon aggregates of microscopic

absorbing particles. We will also consider the conditions required for

vaporization and/or melting of such particles. The environment is assumed to

be exoatmospheric. Before addressing these subjects, however, it is necessary

that we discuss the geometrical considerations which arise when the absorbing

particles are nonspherical and randomly oriented.

2.7.1 Geometrical Considerations

As already mentioned, the foregoing analyses were carried out under the tacit

assumption that the particle axis is align6d parallel to the electric 'field

vector Eo of the incident wave. This of course presents no problea for

spherically symmetric particles. However, in the case of nonspherical

particles, we are interested in the absorption efficiency factor, as 41

function of the angle of incidence, as well as the polarization angle. We are

not permitted to take the average value of Q abs(X)a, i . Instead, the

absorbed power must be calculated %tsing the quantiLy

Cos2 ()Q abs (A , ) -co 2 (a)aabF(X,6Oi/ 2 alsin 9 i, where ej-angle

of incidence and a-polarization angle. The thermal radiation on the other

hand, must be calculated as before, using the total particle area 2ral.

Each value of i will therefore give rise to a different radiation spectrum.
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As can be seen, the precise calculation of thermal radia-ion from a small

ensemble of randomly oriented nonspherical particles involves a somewhat

different treatment than that of Section 2.3. The following accounts for

arbitrary particle orientatiou in the rase of our E.Q.S. theory:

We firs. d that the absotption cross section is proportional to the square

of the component of the incident E-field that is projected on the particle

* axis. Thus, including polarization angle a and the angle of incidence 8i,

,-he absorption cross section becomes

a (¾aa - aabs•fA,0,w/2)cos 2 (a)sin2 (0i). (2-19)

The absorption effic:iency factor is inversely proportional to the area of the

particle, projected in the plane perpendicular to the incident k vector.

Thus,

Qabs(,AQPi) - aabs(AaOi)/ 2 alsin(Oi). (2-20)

Comb4ning Eq.'s (2-19) and (2-20), the absorption efficiency tactor for

arbitrary particle orientation (E.Q.S. theory) is

Qabsl,,ADi) - oabs (A,0,/2)cos2 (Y)sin(Oi)/2al. (2-21)

In Lhe case of monochromatic incident radiation, the absorbed power is

. abs - Io(Ao)ApQabs(Ao'U'Oi)

1 0 (Ao)Apaabs(o,\0,w/2)co52(a)sin(Oi)/2al, (2-22)
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and, in the present nomenclature, the radiated power is

Prad a abs(AO' /2)S (hc/kTef ) (2-23)
0

For cylindrical particles, A/A p-2wal/2al-w. For monochromatic illumination,

an expression, analogous to Eq. (2-17), results from equating Eq.'s (2-22) and

(2-23):

Qabs(Ao,O,x/2)cos 2 (0)sin(Oi)

.40rQ 2irc2hd.

- Q abs(A,O,f/ 2 ) 5 2eh ---- cu. (2-24)
J ~A (e (hc/'kTeff) -1)

0

We see that Eq. (2-24) is transcendental with respect to the variables

a and 0i.

The problem can be solved numerically as follows:

(1) Assume values of the intensity and wavelength of the incident beam. i.e.

assume that we know Io(A0 ).

(2) Successively increment the angles a and 9 to include all possible

orientations of the particle with respect to the incident E-vector.

(3) For each of the above angular increments, calculate L.H.S. of Eq. (2-24).

(4) For each above angular increment, solve Eq. (2-24) (by numerical iterative
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means) to compute the correct value of Teff,

(5) Having obtained Teff, compute the radiation spectrum for that qpecific

combination of a and "

(6) Repeat steps (1) through (5) for each angular incrementation. Add the

spectral intensities (watts/cm2 ) according to wavelengtb for all angles.

The above procedure, using appropriate angular weighting (sin(fi)) and

normalization for the numerical integration of (6), will yield the

orientation-averaged thermal radiation spectrum from our cylindrical

particles. With modification, the more exact Variational technique for

calculating Qabs can be used in the above method.

2.7.2 Aggregates of Absorbing Particles

Infernally Heated Spherical and Cylindrical Clouds

We now consider the case of a cylindrical cloud of particles. Assume that the

source of illumination is uniformly distributed along the cylinder axis, and

that, for all wavelengths of inte-est, the product -y(.)R>>l, where R-radius of

the cylinder, and 7-absorption coefficient of the cloud given by

-3

no• -nabs(,X) m ,(2-25)

where n-number density of absorbing particles m' ).
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In this case, the input radiation per unit axial length is simply

Pin(tot)/L, where P in(tot)-total Input power and L-length oi the cylinder.

The radiated power must equal the input power, and is emitted over a surface,

or "skin* whose depth is approximately 7" The effective value of the

emissivity of the cylindrical cloud is just that of a blackbody. This is

because of the following argument: (1) Within the cloud (r<<(R-7") and

r>>"), the particles are essentially in thermal equilibrium with their

neighbors and the radiation spectrum in such regions is essentially blackbody

radiation. (2) The effective number of particles that are radiating at the

-1
surface at any wavelength is N-nAc Y(A) , where Apc-total cloud area.

Thus, the larger Qabs(A) is at some wavelength, the smaller the number of

radiating particles that are radiating from the "surface" at that wavelength.

(3) Therefore, the radiation from the surface of the cloud will

be essentlally blackbody radiation and the effective emissivity of the cloud

will be unity.

The radiating temperature Te f of the cloud can therefore be found from the

following equation.

Pin - 2wRLj 2mc2d. (2-26)
J AS(e(hC/AkTeff) -1)
0

Knowing Teff, we can then calculate the radiation spectrum from the

integrand of Eq. (2-26).

If the cloud were spherical, and the illuminating source were placed at the
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center of the sphere, then the same procedure can be used by replacing the

factor 2wRL in Eq. (2-2f) by 4wR2, where in this case R-sphere radius.

This equation demonstrates an interesting (and potentially useful)

circumstance that an optically thick ( 7R>>l) absorbing cloud of particles will

radiate essentially as a blackbody whose surface temperature, and therefore

its radiation spectrum, can be controlled by its surface area.

Cylindrical Cloud; External Illumination

We next consider the case of an axially illuminated cylindrical cloud of

absorbing particles. This problem only has meaning if 7R<<l. If, in addition,

7L>l, then the incident radiation within the cloud is given by

Iinc(Z) - Ioe'lz, (2-27)

where z is along the cylinder axis. The particles will radiat6 with

emissivity Qabs(A)Wbb(AIZ). Thus, the radiation spectra of all surface

elements of length dz would be added according to wavelength. As long as the

above criteria on -R and -L obtain, the overall spectrum from the cylindrical

cloud will depend only upon Qabs(A).

If the 7(X)L were <<«, then all particles would radiate in accordance with Eq.

(2-17). usirg Iinc-Io(Ao'), and e-Qabs(>). In the case of axial solar

illumination, Eq. (16) is applicable here for computing the radiation

spectrum.
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Slab Geometry; External Illumination

The case of external illumination of a slab composed of absorbing particles

can be treated simply (see Ref. 24, p.513) using the diffusion approximation.

This is appropriate when 7y>>l and when a abs >> asca, where v-slab

thickness. We further assume that Qabs(A) is fairly uniform over the

wavelength ranges of interest. The problem is to find the temperatures at the

illuminated front surface Teff(l) and at the back surface Teff( 2 ), which

is assumed to be not illuminated.

Siegel and Howell provide a simple calculational procedure for the computation

of the above temperatures. Their results can easily be used in conjunction

with our computational methods to determine the radiation spectrum emanating

from both surfaces.

We first note that, if yr-w, no thermal radiation will occur at surface '2 and

the incident intensity Iinc must therefore be radiated from surface 1, which

will radiate as a blackbody. Therefore, the Stefan-Boltzmann law

(I rad-Io-aT 4) to calculate the maximum temperature at surface 1. Let

this be Toff(max).

We now let 7r be fairly large but finite. The temperatures at the two

surfaces are then given by24

Teff(l) - Teff(max)[((l/2)+( 3 / 4 )Tr)/(l+( 3 / 4 )7r)] /4, (2-28)

and

Teff( 2 ) - Teff(max)[(I/2)/(1+(3/4)7y)] 1 /4 (2-29)
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Equation (2-2) can now be used to calculate the blackbody spectra emanating

from the two surfaces. As long as the slab absorbs virtually all of the

incident radiation, the spectral distribution of this will not sensibly effect

the spectrc emanating from the two surfaces.

Incident Electromagnetic Pulse

There is interest in the interaction between an absorbing particle cloud and a

strong electromagnetic pulse (EKP). Assume that the pulse shape is square and

has a duration of 10 microseconds. This means that the predominant power in

the pulse is in the frequency range of from 100 kHz to -500kHz (300m>A.->60m).

In order for the particles to be strongly absorbing at these and higher

frequencies, the electrical conductivity should not be excessive, and the

aspect ratio of the particle must be quite large. For example, if we we.re to

select the 100 Angstrom azadius particle of Fig. (2-1) for this purpose, its

length would (from the E.Q.S. theory) have to be -2 mm and the filament would

have an aspect ratio of 105. If this could be accompli3hed, and if the

filaments were not aglomerated, this pulse would be strongly absorbed by a

cloud of such particles. The scattering would be negligible. The

temperature would, becauxe of the small radius, be uniform throughout the

volume of each particle.
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Vaporization and Melting

Under conditions of extremely intense incident illumination, particles

composed of graphite will vaporize. Taking the vaporization temperature of

graphite to be 4200 deg.C -,4473 deg.K, and using our first example (e.g. Fig.

(2-1)) of a thin absorbing graphite fiber, we find that the intensity of an

incieent beam, of wavelength Ao-10.6p, is 1300 watts/cm2 .

Sufficiently thin iron particles will malt under'much lower illumination

levels than give rise to the vaporization of the above graphite fiber. This

is because (1) the melting point of iron is lower (1808 deg.K vs 4473 deg.K),

and (2) a sufficiently thin filament of iron has a much larger absorption

efficiency factor. If we take the iron particle discussed in Section 2.6.2 as

our example, and Ao-10.6p, we find that an incident intensity of only 65

watts/cm2 is required to melt the subject particle in a space environment.

We believe that, upon melting, the iron filament would (due to surface

tension) form a spherical droplet. If this is ccrrect, the spherical

particle would no longer be highly abscrbing and would cool and solidify. It

is therefore not at all likely that any vaporization would occur in the case

of the iron particle, except in the case of extremely high intensity levels.

Ionization

For the vaporized graphite fiber, we would have (we believe) a gas of neutral

carbon atoms. Assuming this to be the case, a field strength on the order of

108 to 109 volts/cm would be required to give rise to field ionization of the

carbon atoms.
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If either of the above particles were present in a gaseous cnvironment (e.g.

the atmosphes.e), field ionization of neutral molecules would occur at very

much lower incident field strengths. This is due to the fact that very

substantial enhancements of the incident E-field will occur very near the tips

of the filaments. This interesting topic has been the subject of considerable

in-house work at Panametrics. We might also note that, if conductive highly

elongated particles were embedded in a solid dielectric, we predict that the

incident intensity level required to initiate dielectric breakdown would be

very substantially reduced.

Required Total Mass

Also of interest is the mass required to accomplish a given (dB) reduction in

intensity of an incident beam. This calculation is straightforward ir the

case of a slab geometry: The total mass, Mtot, in the aggregate is

Mtot - AcnWVpp, (2-30)

where Ac-illuminated cloud area, n-number density of particles (a 3),

r-depth of the cloud (m), Vp-particle volume, and p-mass density of the

material comprising the particle. We note that (1) n-7/vabs, and (2) the

one way (dB) attenuation (absorption) is given by (dB)-(2.3/l0)-Y7 . Combining

these and Eq. (2-28), we have the expression for the cloud mass per unit area

required to cause a given (dB) reduction of an incident beam:

Mtot/Ac - (2.3/10)(dB)V p(/abs(x 0 ). (2-31)
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2.8 Cnounts

IXNI 'The foregoing discussions relating incident elect romagnetic energy,

microscopic partial* parameters, and the resulting thermal radiation were

undertaken to provide a general understanding of the important processes as

they relate to the physical parameters of the particles. The specific

problems discussed were chosen for- mathematical simplicity and eass of

physical understanding. The standard te.te (e.g. Ref's. 24 and 25) on

Radiation Theory can ba used in conjunction with the work of this Section in

the solution of more complicated problems - and there are many.

The thermal emissivity of small particles has been discussed by Kattawar and
Eisner 2 6 who also, we note with pleasure, discuss the quantum mechanical

~~27
aspects of the emissivity for small parti4 les. Pluchino2 7 has computed

emissivities (equal to Qa and less than unity) of small layered spherical

particles. Our initial objective herein has been to address the question of

(()-QabsM()>>l. We also note, however, that Bohren and Huffman 26 have

addressed this question and are in agreement with our conclusions that this

circumstance is perfectly reasonable. They also provide some interesting

historical aspects of the subject.

Other objectives of this Section have been to compute the appropriate

radiation spectra for various specific particles of interest, and to determine

means of computing the radiative properties of aggregates of broadband highly

absorbing particles under conditions of intense illumination.
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Appendix A

UCILT?131 my CNRVED CONDVCTIVE Plazas

P:.Iisimary survey

All the numerical results obtained by Panauetrics to the

present tine for scattering and absorption by conductive fibers

have dealt with straight fibers. The question naturally arises

then a as t o .the ef fe atsa of curvaty~re of the f ibe rs on the

scattering and absorption efficiency.

A search of the literature reveal* very little work on

curved wires; all of that, with two exceptions, involving

perfectly conducting wires. The curved, perfectly conducting

wire was apparently first considered by Aharoni in 1946.28 lie

equations vete applied to circular loop and spiral antennas by

)~is1.1 In 1956 Kouyouajian considered back-scattering from

perfectly conducting circular loops.1 1 The two exception* to'the

perfectly conducting case are the work of Philipson, who

considered 10551635 dieleotric rings.2 9 and Acquista, who

considered wavy cylinders.3 0 In both of these latter cases,

however, the scatterer was taken to be only a perturbation on its

surroundings, so that a full integral equation approach was not

requirwd.

We have derived the integral equation for curved fibers.

having finite conductivity, from first principles. The usual

thia-wire analysis invariably assumes that the electric field can

be expressed in terms of a current filament concentrated on the
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&sis of the fiber, sad this is physically somewhat unsatisfactory

sSpeoially when, as* in the 2resent ease. we must work with both

electric and magnetic fields at the curface of the fiber. Ve use

instead an approach based on HuySen's principle,3 1 which states

that fields generated by the tangential components of E and H

(distributed along the surface of the fiber) must precisely

canoel the axial components of the incident electric field along

the fibe'r axis.

This results in an equation involving integrals of the two

unknown functions K and H along the fiber. Taking the thin-wire

limit where fiber radius is very small compared to inoident

wavelength, the second of these integrals is fairly straight-

forward, snd for good conductors is interpretable as the field

due to a distribution of surface currents. The first integral

behaves differently, however. The kernel reduces to a delta-

function, resulting in a term in K at the field point of

evaluation of the integral equation. Surface values of B and H

can then be related by a surface impedance concept to finally

give a pare integral equation for the current.



The Integral Iquatioa

When an incident electromagnetic field Einc illuminates a

body in free space, the resulting fields are related by Huygens'

principle, which states rigorously that 3 1

fino(r) - (11/4x) Vxfda'k' z E.+(:_') i(kR)

B~)outside(-)

-(1/4 v) Vx Vx f do'in' x H+(r') z(kR) 0 inside

The left-hand side (LHS) of this equation consists of the sum of

the electric fields due to the incident wave and surface

distributions over the body of magnetic and electric dipoles.

respectively.

Here

S(kR) - (1/kR)eikR. R = Ir.- r' , (A-2)

where r and r are the source point and field poi at.

respectively.

Equation (A-i) states that the B field is given by the LHS

for all field points outside the surface. On the other hand, for

all field points within the surface the LHS vanishes identically.

i.e. the surface field distributions must precisely cancol the

incident wave. This latter statement is *onetimes known as the

extinction theorem, or the extended boundary condition.
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The extinction theorem is applied to the curved fiber, shown

in Fig. A-1, as follows. Let a - fiber radius, and p(s) - radius

of curvature as a function of position a along th.e axis of the

fiber. we assume that

a/Pain < < 1 (A-3)

a/b < ( 1 (A-4)

ka ( 1 , (A-S)

i.e., the fiber radius is uuc. less than the minimua radius of

curvature, the fiber half-length b, and free space wavelength k =

2n/).., respectively. We also assume the fibeo to have moderate to

large conductivity, so that axial currents will be i'.duced and

guided along the fiber.

Now requiring that the axia.l. oompouent of Eq. (A-1) vanish

along the fiber axis gives

(114s) -Vx vxf do ' i' x g(kR)

+(1/4%) As vxfdo' k;' x &+(K') g(kR) = • Eino(s) . (A-6)

Note that this equation is still exact, although we have only

used a portion of the information available. The curl operators

may be taken under the integral sign, because the field point

ne6d never approach the fiber s$rfao4.
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Figure A-1.Geometry of the Curved Fiber.
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We suppose the magnetic field on the surface to be purely

azihiu-hal, so that

(A-7)

a' . U. (g') J r' (s)

Using the identity curl curl = grad div- div grad, the first

itegrand of Eq. (A-6) takes the form

a VT Vx 'L X &+ (L') S(kR) 7 • -7-17.)' Ve') g(kR)

- (s') A s V ' g(kR) + k 2 (4-') R(&') g(kR)

- (s-') (. ('-V) s(kR) + k2 (M e ,) I(s') 8(kR)

=-'(s) -82/1sas' - k2 (s • $') S(kR) , (A-4)

where in the last stop we have used the formal notation V MV I

0/Os and ''U = -8/8s' for directional derivatives. The minus

sign aris.s in the latter case because the primary variable has

the form

S•- r(s) r(,')

For the second integral of Eq. (A-6), the eloctric field on

the surface is assumed to be purely axial, i.e.
t ýh e ýa89



()- B(s') . (A-9)

Now

V1 , E.,.(r) ( (kR) -^ • ( x' K+) x va

M (' _+) Z ( x vV)

-- B(s t ) c .( As ) (; v')

-E(s') ( s ,) (,' • R)ks'

-- (s') ( • ') (a/R)ks' . (A-10)

Here in the fourth step we used the identity

(a x b) • (_ x d) - (a • a) (b • d) - (a • d) (b • c)

then noted that the scalar product n£' As vanishes identically

under the azimuthal portion of the surface integration. In the

last step above &'(kR) = dg/d(kR) and we have assumed that

' • a/R. (A-11)

Hote from Fig. A-1 that this equality only holds when Is-s'l <<

p, i.e., for points sufficiently close together along the axis

that the curvature of the fiber has not come into play. No

9 10



approzimation is involved here, however, because the integral is

entirely negligible otherwise, as we will now see.

Using Eq. (A-10), the second term of Eq. (A-6) becomes

2w +b

-(k2/4xI) adOt!-d~tel s)s' (siR) st(hR)

0 -b

+b

-(k/) (ka) ds ( ') (1/kR) g'(kR)

-b

(1/2)a 2 E(s) ds'[(s-s') 2 + a2]- 3 /2 - E(S) . (A-12)

- go

From the first step one notes that because ka << 1 only that

portion of the intoegal of order (l/ka)2 will contribute to the

final result. Noting that

(1/kR) s'(kR) $ -(1/kR) 3 = -(l/k) 3 [(s-s') 2 + a 2 ]-3/2

for kR (< 1. the remaining steps of Eq. (A-12) are straight-

forward.

91



Putting the results of Eqs. (A-8) and (A-12) back in Eq. (A-

6) and carrying out the azimuthal integration# one finds that

(ia/a) f ds'H(s')[82/8s 8.'-k 2 (4'4)J gR~' (S)

- -; O~inc (a) .(A-i13)

We can express this result as an integral equation for total Ljnj.

gILrr2&j I(s) by writing

I(s) - 2xai H(s) *(A-i14)

and introducing a surface impedance per unit length given byls

Z - -%'wttI2xakf) 10 (kfa)/.T0 '(kfa) .(A-i5)

Here kf - (w 2 pe 4 jwpo)1/2 is the complex propagation constant

within the f iber. So, is the Bessel function of the f irst kind,

and w' havo assumed that both B and I within the fiber vary much

more rapidly in the radial than the axial direction. This

assumption is onusistes-t with the requirement of moderate to

large conductivity. Note, however, that if one were to represent

I~s) as a Fourier expansion. then eventually the axial variations

of such terms would dominate, with the result that kf in Eq. (A--
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15) would have to be modified. 1 5  That is, the surface inpedance

becomes dependent on the rate of axial variation of current when

that rate is large.

The tangential a field oca now be expressed as

K(s) - ZI(s) (A-16)

and using this result, along with Eq. (A-14), one finally obtains

(1/40w)f do' I(s') [1 2,#As &8' - k 206s'4)8 (s.s'' - ZI(S)

-b

.-s . 31n •S) . (A-17)

Note that for straight fibers '*s' - 1 and this equation reduce*

to the usual formula. 5  4180 for cirved. perfectly conducting

wires Z--O ana one again findx the aceepted formula. 1 2
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Approximation for Speeial Fibers

For the general case, as described by the integral Eq. (A-

17). it i clear that detailed numerical computations &re

required in order to obtain any explicit results. If the fiber

axis has radius of curvature large compared to wavelength, or is

made rp ot a sigzag series of straight line segments, bowever.

then the absorption cross-section is readily approximated using

earlier results.

First, consite: the case ,-here the fiber axis curves only

slowly and is relatively long, compared with wavelength. Then we

can use the infinite cylinder result to obtain the absorption

cross-section per unit length aa/5L where this ratio is given by

Eq. (1-20). Note thut as will be a function of position a along

the curved fiber, in that as depends on the angle 00 formed by

the incident £ vector and the local tangent to the fiber axis.

The total absorption cross-soction Eabs is then given by

+b

'abs - f do (a& (s)/I] . (A-18)
-b

It is now straightforvard to obtain results for totoidal or

C-shaped fibers, or other configurations meeting the slowly-

€rrving limitation, by numerical integration of Eq. (A-18).

For a fiber made up of zigzaS line segments, it is more

appropriate to emply the quasi-static approximation to the

absorption cross-section abs as given by Eq, (1-29). We have
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already seen by comparison with other computations that this

formula is quit* accurate for a11 fiber longtha provided the

modified dopolarizatiom factor L' of Eq. (1-31) iA used for kot >

1.

Now for a fiber of N segments, having individual laagths t at

a - 1. 2, ... -N, the total absorption cross-sectioa Eabs Is

livem simply by

N
E•aba ' Cabs (t 3 ) sim2 on * (A-i9)

S-1

where the factor s13 2 0m (augls between incideat R vector and ath

segment axis) is imoluded because the origimal Eq. (1-29) was

specifically for broadside lioideace.

It is nrt-ful to note that for both Sqs. (A-18) and (1-19)

the oross-seotios labs is a linear am of the erosu-secioza of

individual &*&semts. Because each sueh segmeat behaves precisely

as a straight fiber auder orientation averaginm, one coneludes

that the oriestation-averaged cross-8estioe Labs for the cuaved

fiber will be Jast equal to that of a straight fiber of the same

total length.
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Appendix B

TAIORUT OBSCURATION

In this section, taking into coasideratio both the diffuse

cloud scattering properties and the bean extinction properties,

one requires the optinum conditions for target obscuration from a

mass efficiency standpoint, over a wavelength rense where the

theory is believed to be most accurate. It is appropriate to

employ the quasistatic approximation. in which particles are

assumed to be small in comparison with sessor wavelength.

Consider the situation whoe a target of (radar or optical)

cross-section 9T is partially concealed by a cloud of particles,

the cloud having as incoherent oross-tection Ec. because of

this iacoherence, the cross-sections are additive and one has

Observed cross-section - E a + 9T 0-2y' - (B-1)

where y and v are the decay constant and thickness of the cloud,

respectively.

Wo sow asoume that the sensor cannot detect the targot if

o L EayT 0-2y-c (B-2)

where K is a figuro of mf,•it. e.g. for r - 0.1 the signal from

the tatget vould be 10 dB down in the " noise" of the cloud
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retur&. The diffuse scatteriag from the cloud has earlier bees

computed to be32.33

a 0 Vp (B-3)

where VP is sisgle-partiole volume, the reduced conductivity is

gives by ac' - kos - .6o01 4 c (is terms of cosductivity, or the

imaginsazy part of the relative dielectric constant). and A0 is

the geometrical crose-sectios of the cloud, or the seasor beam

croso-sectios at the cloud, if the latter should be smaller.

Using this result. and takiag the equality in Eq. (B-2) theo

gives

2 V 0 p ae . K OT e0-2 * (3-4)

The decay ocastast for the cloud is given by

I ' Bezt , (B-S)

in terms of the number density of particles and the oriotLtiton-

averaged extinction oross-sectioa per particle. Assuming that

absorption effects damisate, one has

SV

Vext t Babs a p2- @ Vp/ 3  (1-6)
311 + (L ) j

where in the next-to-last step the quasistatic approximation was

employed, and in the last step we noted that optimum absorption

will occur when
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Lo" - 4(alt)2 I a(t/a) -11 a" (< 1 (B-7)

(L is the depolarizinl factor). Note also that the total mass 1

of particles can be vritten

N - p Vp 1- Ac . (3-8)

Employing Eqs. (3-5), (5-6) and (5-8) in Eq. (B-4), and taking

the logarithm of the result determines the required mass to be

3pA I /7 I*1
* aA !-C,\ (5-9)

26G ~ v1 k Z p6 A.Ia

The quantities Is. T and Ac are proscribed by the logistics of

the task at hand. Thus, to mineimie N one first must seek, a

material vith smallest possible valu of the ratio p/a©'. Is

addition, it is desirable to obtain as large a value of the

product ks2 Vp ao as possible, in order to minimsize the loga-

rithnic tern in Eq. (B-9).

For concreteness, suppose that

Lo" -0.1

kot - 0.1 . (B-10)
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From 1q. (B-7) we ther find that

0.01 (1/a) (B-11)
4 a ' [tn(t/a) a.)

This equation can be used to dptermine particle radius, once the

length and conductivity are known. Typical particlo design

pazaneters ca- now be listed:

a) microwave reuion

Y - 3.z 10-2 a

t - 4.8 x 10-4 .

0o - S A10 6 mho/m

a - 2.2 x 10-8 m

b) inf rarted reaion

y - 3 z 10-5 a

t - 4.8 x 10-7

-c - 1 x 104 iho/m

a - 1.0 x 10-8 a
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Appeadix C

TAILORING OF PARTICLE PARAMKTERS FOR SPECIFIC APPLICATIONS

(The discussion in this Appendix was done during 1985 as

part of the effort of the first year of the Program. The

theoretical and computational techniques, as described in Section

1 of the present report, have been significantly improved since

that time. However, this Appendix is included in order to

demonstrate the approach we have devised for this application.)

It is the purpose of this section to demonstrate the tech-

niques ty which the parameters (length, radius, and conductivity)

of thin conductive fibers can be adjusted so that a cloud of

these particles will have selected specified spectral charac-

teristics. These characteristics are* (1) large absorption and

small scattering, (2) large scattering and low absorption, and

(3) transparency- Two frequencies were arbitrarily chosen for

the cases to be analyzed. These are fl - 1010 Hz and f 2 - 1012

Hz, corresponding to wavelengths of 3 cm (microwave) and 300

microns (infrared).

The analyses to be discussed will be based on our "extended

quasistatic model", the basis of which is described in Section

1.3. A.n demonstrated in Section 1, this analytical model

producea results which are in surprisingly good agreement with

the results obtained using the much more rigorous variational
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technique of Section 1.2. To be more explioit, ihe quasistatio

model can be used to calculate the absorption cross section over

a very wide rangse of kot, including koL )> 1. The scattezing

cross section computations resulting from tke quasistatic model

are valid only in •he range kOL ( R.

In all of the cases analyzed, the results of the quasistatic

oaloulations are directly compared with the corresponding results

of the variational t#chnique. We find these comparisons to be

quite remarkable.
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Coastitativo Equations

In addition to the equations of Sections 1.2, 1.4 and 1.5,

tho fullowi8g equations are utilized in the foregong sanalysem:

Oriettation-averaged absorption cross-section

(see Eq. 1-29):

5 abs = ( v) abs (C-i

Orientation-averaged scattering cross-section (see

Eq. 1-30):

asca = (1) soca (C-2)

Hish frequency depolarizing factor (see Eq. 1-31)

• 2

L- 4 (k -) [in ( K )-1] (kot (< ) (C-3)

The inclusion of the above equation permits extension of the

2alculation of ablorption cross section well into the kot )> 1

regime. Due to this, we refer to the present theory as the

"extended quasistatic theory."

In tb.is treatment, we are using the Drude (free electron)

model for the complex dielectric constant (Section 1.4) and the

Fuchs model for the dependence of conductivity on particle

d.imetsions, and we have purposely chosen frequencies (a and w2

such that possible anomalies duo to these do not appear. Also,

.ýor purposes of analysi&, we can make the simplification a

is". The computer program, however, does not utilize this

simplifica tifu.
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Absorb at 3 oft. Refloat at 300 microns

These criteria lead to the folloving mathematical

statements:

At frequency "I - 2w x 1010 Hz

sp (1)'ga (2) << I(C-4)

Lot 8 (1) .,01 (C-S)Let • .01(C-

sp (2)

(La" (1))2 ( 1 (C-6)

Lot La" (1) - 0.1 (C-7)

Equation (C-7) ensures that the absorption cross section

will be at its maximum value at frequency wl, but viii be reduced

by a large factor at frequency 02 - 2x 1 1012 HR. Also, we know

that the scattering cross section will be at least as great at 02

as at u1. This will cause asca( 2 )/Oabs( 2 ) to oe large, which is

what- we seek at w2.

From Eqs. (C-5), (C-7), (C-1), and (C-2), we obtain (with

the appropriate definitive equations of Section 1.3) equations

for the conductivity ac, radius a and length 1:

s a 02(.03)2/3

al a 2 (10 [Ln (•)-1])
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I
1/3 1/2

S- c (.03) 1 1/2 (C-9)
011/2(i [Cm Ta 1 1/6 (a) ;(wj) (0 fu(-) -1]1) so

- 2a 10 {Cn (g) -11 (C-10)a k ml 40o

when lqs. (C-8) and (C-9) are equivalent. i.e.. we can choose a

conductivity and solve for a. or choose a radius, a, and solve

for the conduotivity a.. We will do the former. Knowing both a

and a.. we then calculate the length from (C-10). Note that the

term in square brackets in (C-8), (C-9), and (C-10) is very

insensitive to large variations in (t/a). This is especially

true when it is raised to fractional powers in (C-8) and (C-9).

Therefore, we oan cone quite close to the desired results if we

simply let [ ] - 2.5. This permits direct estimation of a and C,

given a preselected value of a€.

Table I

Cond U 1.001+04 Radius - 8.681-06
Length - 3.71E-03 k 0 (1)C/2 - 3.881-01

Cond = 1.001+05 Radius M 2.75E-36
Length - 3.71E-03 k 0 (1)C/2 - 3.88E-01

Cond M 1.001+06 Radius - 8.681-07
Length - 3.711-03 k0 (1)t/2 - 3.88E-01

Cond - 1.001+07 Radius = 2.75E-07
Length - 3.71E-03 k 0 (1)t/2 - 3.88E-01

Cond - 1.OOB+08 Radius VA 8.68-08
Length 3.71E-03 ko(1)t/2 - 3.88E-01

Cond = 1.005+09 Radius M 2.75E-08
Length - 3.71E-03 k 0 (1)t/2 - 3.88E-01
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The *bove procedure leads to sets of permissible parameter

voluts, as oxemplified in Table I. Substitution of the iarious

parameter sets into the computer program yields graph* such as

shown in Pig. C-1. Since these graphs are identical over the

wavelength range 300 microns to 3 on, only one is shown. This

figure is representative of a fairly highly conducting netal

(bulk conductivity - 107 sho/m). The relaxation time v is that

of copper.

Prom Fig. C-1. we see that (1) indeed, the absorption cross

section peaks at very nearly toe wavelength .I - 3 on, (2) that,

in the case of absorption, the extended quasistatic theory is in

excellent agreement with the variational theory for wavelengths

greater than about 50 microns, and (3) the scattering as

calculated from both theories is in excellent agreement when

We further conclude that the mathematical 'design"

procedure demoostrated in this sub-section, although not

analytically exAct, provides good parametric sets for the

solution of the stated problem, since the objectives are net at

the wvo specified wavelengths.
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PLOTS OF ELECTROMFG&NETIC CROSS SECTIONS VS WRVELENGTI4

Fi Is# 13
Pl ot vq

4 Nov 1395

Backscatter (v)

0

Abaorptio% (e.q.s.) I Ong 4E-03

k6

-6 -5-4 logolumda) -3 -2

Figure C-1. 'An example of predominant absorption at X - 3 cm
and predoinant scattering at 300 microns. v
variational teonique; e~q.s. - xtended
Quasistatic Theory.
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Absorb at 3 onm Absorb at SOO Mier*e&

We have quite difforest criteria for this problem as

eopared with the preceding problem. more, we wish to have a

very highly absorbing cloud whioh has low scattering cross

section.

In this case, the cloud scattering cross section is

gives by

, = (• 2ab:) (C-1B)

where A. - projeoted area of the cloud or that portion thereof

which occupies the solid angle of the iscident beam.

Obviously, we wish to make the absorptioa orose section of

the particle much larger than it# soatteriag cross section. This

must be true over at least the wavelength range from 300 microns

to 3 cm.

The above considerations lead to the following mathematical

criteria:

(1) In order to have maximum absorption over the specified

wavelength range, we want Le" (1) (( 1 and Lo" (2) (<

1. This means that the particles should be very thin

and (perhaps) not too highly conducti-ng.
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(1) Simes, aador the above o*oditious, face ks 2 V 2 *o2

and Va8 " yp 4rog the ratio (l80a/labs) is proportional

to k02 V1 ws. therefore. in oerao to maintain high

aloud absorption and low cloud scattexiag. we wish to

keep the produet Vp ie low (we have so conatrol over

Io) .

A little bit of eaperimentiag with the ezteaded qsasistatic

(U8) computer program yields appropriate sets of parameters.

The parameter set eorresponding to minimal total mass is a - 100

Ausetroms. I - 100 micros*. ard we - 106 mho/m as the bul•

ooadustivity. The results of usiag these parameters is the

EQS and variational codes are shows in Fig. C-2. One .as trade

off P larger radius for a lover ooaiuotivity aad aohkove similar

resusts, but with a somewhat higher ratio of (8ags/aabo).

Note agaia the rccarhable aroeaeset between the computations

based oe tit two isdersadcat theorJost
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Plot-vq
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IRoflostool melod**

It is gesy to d&eis& particloe haviss very low abeozptio!s

&ad relatively high soatteriag. 5Ipoziesee has shows us that if.

foz Szample. We oPooSeo a highly Qomdsotiag metal usoh a0 coppet

ot slumimva, &ad seleet a radius of one m•iron or greater, the

partial• will be *$Bestially oompletely refleatiag for at least

all waveleonths below 30 mietoas. we can tailor the seettezing

otose sestios to bosome pzoportiinal to A4 at vLv(Iosgtkg *igsii-

isgatly below that for whisk ho• " 1, whisk of Goatser, rpteseats

Rayleigh seatterian from 'perfectly eondsotiag" wiles. Thas.

the aggregate of particle sea *&oily be sade to be zeflooting at

aso waveleagth and eseBntially transpareot at same (signiti-

costly) lovez wavoloaeth. Chaff clouds behave ia this way.
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Transparent at 2 on. Absorb at 30SO ioroas

Is this ease. we Wast the seatteria's Gross seotios to be

msee lower than the absorptionaroses seotios at %II wsveleagths

under *essideratiea. The requirements due to this and tho

traxapareae7 Griterioa at *I are gives lbelow:

(1) make Vp go as small as possible. coasistest With the

other criteria.

(1) Make Le -1 at 02-

(3) make kol I at 02,.

Application of thes* criteria leads to the parameters listed

is Figure C-S. Note that, at 1% - 3 as, the absorptiou is three

orders of magnitude lower than that at 1% - 300 Sieroaa. The

seatteriag throughout the *1 to 02 spectrum is mshe lover thas

the absorption.
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PLOTS OF ELECTROMAGNETIC CROSS SECTIONS VS WRYELENGTH

i I at 11
Plot Vq

4 Nov 1~B8

46

u 
AAEE j

a ai5-E0
ngh2E0

4 a1,L
ts U.E1

m4 1

-6-5 -4 1@g(lwwdt) -3 -2 -

Fiasco C-3. As *sample of transpareaey at 3 ow &ad prodomiaost
absooptioa at 300 microas.
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Commeata Relative to Partial* Parameter Tailoring

(1) Our extended quasistatic treatment provides a very

useful tool in the design of particles for specified

applications. In some instances, the EQS theory does

not yield accurate quantitative data and should be used

primarily as a first stop to be falloved by the full

computation using our Variational method.

(2) The calculation of scattering cross sections using the

EQS theory is limited to the range kot/2 (_ 1, so the

variational technique must be employed beyond that

point.

(3) Te have included backscatter croVs sertion computations

in Figures C-i. C-2 and C-3 for those applications that

require this.

(4) Within the bounds of present technology, it is possible

to create particle parameters that could provide useful

spectral characteristics over a wide vavelength range.
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